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Abstract
The paper focuses on machine learning algorithms used to predict backscattering phase matrix (BSPM) elements
of high-level clouds based on meteorological observations. Several machine learning methods, such as random
forest, support vector, and linear regression, are used to detect the relationship between meteorological param-
eters and BSPM elements. It is shown that the random forest algorithm provides the most accurate predictions
compared to other models. Despite a relatively small amount of the initial data, these methods have a good
potential for their use in analyzing complex atmospheric interactions.
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Introduction

In recent years, advances in machine learning have significantly enhanced the ability to predict complex physical
phenomena through the analysis of large amounts of data [1]. This is particularly relevant in climatology,
where weather patterns are influenced by numerous random factors [2]. Up-to-date information about weather
changes is important for many areas of the human activity, e.g., protection from hazardous natural phenomena,
anthropogenic environmental pollution [3, 4]. Long-term burning fossil fuels, deforesting, and interference
in natural processes disrupt the climate system equilibrium. This leads to a disruption of the Earth’s radiation
balance, record growth in air temperature, abnormal precipitations, droughts, and other negative processes [5–7].
It is widely recognized that the cloud cover is one of the main sources of uncertainty in the prediction and
understanding of climate changes. High-level clouds (HLC) have a large horizontal extent, and despite their low
optical thickness (compared to stratiform clouds), they make a significant contribution to attenuation of direct
solar radiation and enhancement of the greenhouse effect.

In climate models, radiative properties of high-level clouds are approximated, as the data on their microstruc-
ture are insufficient and primarily contain oriented crystalline ice particles [8, 9]. Diagnostics of the HLC
microstructure is a challenging task, because in sampling air containing oriented aerosol particles, information
about the particle orientation disappears. Therefore, only remote sensing methods based on optical radiation
scattering by aerosol icy cloud particles, are suitable for detecting oriented particle ensembles in HLC.

The high-altitude matrix polarization lidar (HAMPL) developed in National Research Tomsk State University
(Tomsk, Russia), provides remote sensing of the HLC microstructure parameters at a height of 15km [10].
This requires lidar signal recordings for 4 polarization states of laser probing of polarization elements in 4
positions in the receiving channel [11, 12]. In general, to determine 16 BSPM elements, it is necessary to
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solve a system of 16 integral equations. These inverse problems are quite difficult to solve. In the case of
HLC containing non-spherical particles, the inverse problem becomes even more complicated, as there is no
solution for the light scattering over particles with the shape differing from spherical. Due to these reasons,
a traditional approach to the BSPM detection in crystalline clouds, based on solving the inverse problem of
light scattering, faces sometimes inextricable difficulties. At the same time, neural networks are an effective
tool to solve inverse problems and provide parallel training process, thereby facilitating relatively quick labor-
intensive BSPM calculations based on the experimental data [13, 14].

The aim of this work is to study machine learning in atmospheric lidar sensing and processes important for
addressing problems of ecology, atmospheric dynamics and physics. The most effective prediction algorithms
are identified for BSPM elements, and their performance is evaluated in the context of various data compaction
and feature extraction methods. The proposed methods of the parameter reconstruction of natural and artificial
(contrail) high-level clouds under changing climate conditions and anthropogenic effects, utilize ground-based
atmospheric sensing data and machine learning techniques. The software based on artificial neural networks, is
created to predict BSPM elements of high-level clouds based on meteorological observations.

Machine learning in atmospheric optics is a significant step forward in the predictive ability and analysis of
HLC optical parameters and geometry. This allows considering the complex interaction between meteorological
parameters and reconstructing any dependence of atmospheric optical parameters. This is undoubtedly relevant
for understanding the nature of their formation and evolution.

Materials andmethods

The atmospheric lidar data storage from 2009 till now is used to evaluate the predictive capability of parameter
recovering algorithms of high-level clouds based on the lidar data and machine learning. The lidar data storage
comprises over 3000 series of measurements of atmospheric parameters and is systematically updated. Lidar
measurements are the most promising in addressing issues of operational monitoring and management of atmo-
spheric conditions, as they determine vertical profiles of optical, microphysical, and meteorological parameters
of the scattering medium in real time.

Lidar observations are noninvasive testing which has no adverse effect on the environment. The analysis of
laser radiation parameters following its interaction with cloud particles, provides the evaluation of scattering
volume properties, including microphysical parameters such as size, shape, and particle orientation. With the
high spatial (37.5–150m) and temporal (0.1 s) resolution, the lidar identifies localized inhomogeneities charac-
terized by the gradient of optical and microphysical characteristics [12]. Systematization and analysis of lidar
measurements provide a deeper understanding of the HLC formation and evolution.

The ERA5 reanalysis carried out by the European Centre for Medium-Range Weather Forecasts was utilized
for the lidar data interpretation and analysis of meteorological conditions at the HLC altitude [15]. The ERA5
reanalysis provided regular and detailed vertical profiles of meteorological parameters, making it a valuable tool
for complementing and refining aerological sounding data at a low frequency.

For the accuracy verification, the ERA5 dataset was compared to aerological sounding data collected for
5 years from 5 stations within a 500-km radius of Tomsk. It was shown that vertical profiles of meteorological
parameters selected from the ERA5 data, corresponded to the actual conditions at the HLC altitude. That allowed
using the ERA5 dataset for a detailed study of meteorological parameters in the upper atmosphere [16].

Results and discussion

In our recent research [17, 18], we used machine learning methods to determine the empirical relationship
between meteorological and HLC parameters. The relation between meteorological parameters and the HLC
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altitude was investigated to determine the HLC boundaries and predict BSPM elements based on meteoritical
conditions. It was demonstrated that only m22, m33, and m44 elements of the BSPM main diagonal depended
on weather conditions. Specialized software was employed for the data processing and analysis with a high
accuracy and reliability.

In this study, we determined the most effective algorithm for predicting BSPM elements of clouds. For
this, several conventional machine learning methods were evaluated, including random forest, linear regression,
support vector regression, and principal component analysis (PCA). The data transformation was performed
using normalization techniques [19]. These models were selected due to their simple configuration, resistance
to overfitting (due to regularization), and dealing with limited data volumes.

To determine the best model hyperparameters, the data were split into training, test, and validation sets. These
hyperparameters resulted in the lowest mean squared error (MSE) in the test set, calculated from Eq. 1. The
training set consisted of 247 observations gathered between March 22, 2016, and April 9, 2019. The test set
included 49 observations gathered between April 16, 2019, and March 17, 2020 as well as from September 22
to November 30, 2023. The validation set was used to assess the final model quality, rather than for the model
training or hyperparameter selection. It consisted of 49 additional observations gathered between March 18 and
July 19, 2023.

MSE =
1

N
� † �

ypred − ydat
�2

(1)

Standard hyperparameter selection techniques were employed to minimize the MSE between the predicted
and measured values of the test dataset. Specifically, for the random forest model, the primary hyperparameter
included a number of trees in the ensemble. The best parameter was found to be 300. Regularization was not
applied to the linear regression model and thus no hyperparameter was adjusted for it. For the support vector
regression (SVR), the core hyperparameter was the kernel. Therefore, different kernels were tested, and the
radial bas is function kernel was found to produce the best results in the test set:

K
�
x; x0� = exp”jx−x0j2; (2)

where |x–x0|2 is the squared distance between vectors x and x0 calculated by Euclidean metrics, γ is the parameter
regulating the kernel width.

The data preprocessing, including the PCA and normalization of the feature space, is conducted to improve
the model performance. The number of principal components varies between 10 and 30, and 20 performing
bests. The average value of these components is subtracted from each feature, and resulting values are then
subjected to the standard deviation. This results in each feature, having zero average value and standard deviation
of one.

The best algorithm for predicting BSPM elements based on atmospheric parameters, is presented in Table 1.
We select the dataset of optimized 345 observations from 2016 to 2024. 296 of them are used as the training
set and 49—as the validation set. After the model training, validation set predictions are made, and the MSE
quality metric is calculated.

The best results for m33 and m44 elements are archived using the random forest in conjunction with the
PCA. For m22 element, the SVR with the feature field transformation techniques (PCA and standardization)
demonstrates the highest accuracy.

Figure 1 contains scattering diagrams corresponding to the best outcomes, with the actual predicted and
measured values plotted on the horizontal and vertical axes, respectively. A straight line is expected at an ideal
definition of BSPM elements, as the predictive value coincides with the measured one. However, due to the
presence of noise or weak dependence on the input data, a difference between the predicted and measured
values is observed.
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Fig. 1 Scattering diagram of BSPM elements: a m22
element predicted by SVR, b m33 element predicted
by RF+PCA(20)+scale, c m44 element predicted by
RF+PCA(20)+scale

In all cases, we observe a certain degree of variation, which indicates that it is feasible to estimate BSPM
elements using machine learning tools and meteorological parameters. The error is however significant enough
to limit the applicability of these results. This issue can be addressed through additional specific information
about the dynamics of profile changes over time and anthropogenic influences. The range extension of the
experimental data will provide more conclusive results.
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Table 1 Algorithm Com-
parison

Methods HLC BSPM elements MSE

RF m22 0.03389

m33 0.08311

m44 0.13201

RF + PCA(20) m22 0.03023

m33 0.06572

m44 0.08723

LR + PCA(20) + scale m22 0.02777

m33 0.10220

m44 0.13197

LR + PCA(20) m22 0.02891

m33 0.06998

m44 0.11223

SVR m22 0.02758

m33 0.06929

m44 0.09901

SVR + PCA(20) + scale m22 0.04750

m33 0.13139

m44 0.14655

Conclusions

The proposed software utilized machine learning algorithms to analyze meteorological parameters and predict
optical parameters and geometry of HLC. The prototype can be used to test various models and determine the
most effective approach. The resulting tool allowed to preliminary evaluate BSPM elements and boundaries and
altitudes of the HLC detection. A weak correlation was observed between HLC parameters and meteorological
parameters. In order to determine this correlation, additional data are required to refine the results and consider
experimental data, which we plan to collect soon. The obtained results were analyzed to determine the most
suitable algorithm for predicting BSPM elements. It was found that in conjunction with the PCA, the random
forest yielded the highest accuracy for m33 and m44 elements. The support vector regression with the PCA-
transformed feature field and standardization demonstrated the best accuracy for m22 element.

Despite the model optimization, the overall trend of predictions remains low-variable and requires continued
improvement. The prediction quality can be improved by the transformation of target variables, such as Box-Cox
or Yeo-Johnson transforms. Additionally, Kolmogorov-Arnold networks may also be explored [20]. It is thus
necessary to employ different models for the accurate prediction of BSPM elements, which must be optimized
for each aspect. This approach will improve the prediction accuracy and reliability of various BSPM elements
based on meteorological parameters.
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