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Abstract: The mechanism of carbon nanotube unzipping on a Cu(111) surface was investigated using
density functional theory calculations. Optimized structures of armchair and zigzag carbon nanotubes
of various sizes were considered, and their energies were compared to those of corresponding planar
graphene nanoribbons. The results demonstrate that the flat configuration on the Cu(111) surface
is energetically more favorable than the tubular one. As the nanotube diameter increases, the
energy difference between the tubular and flat forms decreases due to the reduction in curvature
of the nanotubes. Additionally, the energy gain associated with the transformation from nanotubes
to nanoribbons is more significant for the zigzag-type structure than for the armchair-type one,
suggesting that zigzag carbon nanotubes open more readily on Cu(111). Hypothetical intermediate
states in the nanotube-to-nanoribbon transformation were also explored, providing valuable insights
into the mechanism of this process.
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1. Introduction

Graphene is a two-dimensional (2D) material composed of a single layer of carbon
atoms arranged in a hexagonal lattice. Its outstanding properties, such as high electron
mobility and strength, have attracted extensive research interest [1–5]. Graphene is a promising
material for many applications, including electronics, solar cells, energy storage, and water
treatment [5–10]. Recently, graphene-based particles detectors have been demonstrated [11–13].

However, the use of large-area graphene layers in digital electronic devices is limited
due to their zero band gap. On the contrary, graphene nanoribbons (GNRs) may have
a non-zero band gap and can be used for fabricating digital electronic devices, such as
field effect transistors [14,15]. Notably, the band gap of GNRs is inversely proportional to
their width [16,17], so the properties of graphene-based electronic devices can be tuned by
controlling the size of GNRs.

There are different approaches to fabricating graphene. One strategy is to grow 2D
carbon structures on substrates, for example, by the chemical vapour deposition (CVD)
of organic precursor molecules on transition metal surfaces. Cu(111) is widely used as a
substrate for CVD of graphene due to the low solubility of C adatoms in copper [18–21]
and the possibility of growing graphene layers with low defect density [22,23]. Another
approach is to deposit and decompose fullerenes or carbon nanotubes (CNTs) on a surface.
In particular, GNRs can be prepared by unzipping CNTs [24]. Since CNTs can be easily
synthesized, for instance, by the arc discharge method [25], this approach is very appealing
regarding the fabrication costs of GNRs [26,27]. Moreover, unzipping CNTs with well-
defined sizes allows for the control of the width and edge structure of GNRs.

The unzipping of CNTs deposited on a substrate can be promoted by chemical ox-
idation [28], electrical rupture [29], sonication [30], metal-catalyzed unzipping [31], and
cryo-milling [32]. Recently, the fabrication of GNRs by the surface-catalyzed unzipping
of single-walled carbon nanotubes (SWCNTs) has been reported [33]. It has been shown
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that SWCNTs adsorbed on Cu(111) unzip to GNRs upon annealing at 820 K. In contrast,
SWCNTs deposited on Au(111) desorbed from the surface at 670 K without structural
changes. On Ru(0001), the deposited SWCNTs are converted to irregular carbon structures.
The experiments with the copper substrate agree with earlier research [34], showing that
unzipping of CNTs can occur without external stimuli such as oxidation or unzipping
molecules. The feasibility of breaking C-C bonds in sp2-hybridized carbon structures on
transition metal surfaces was also reported for fullerens on Ru(0001) and Cu(111) [35,36].

Despite the simplicity of the surface-catalyzed unzipping of CNTs, the mechanism of
this process still needs clarification. In this paper, we use DFT calculations to study the
relative stability of armchair (AC) and zigzag (ZZ) types of SWCNTs and GNRs adsorbed
on Cu(111). Calculations show that on Cu(111), the planar state of GNR is energetically
favorable compared with the tubular form of CNT. The energy difference between the CNT
and GNR states decreases with the increasing size of carbon structures. Moreover, this
difference is more significant for the ZZ-type C structure than for the AC-type, which can
be attributed to the lower formation energy of ZZ-GNR on Cu(111) compared with that
of AC-GNR. The hypothetical intermediate states of the transformation of the fully closed
CNT to the planar GNR were investigated for various sizes of carbon structures.

2. Methods

DFT calculations were carried out using the Fritz Haber Institute ab initio molecular
simulations (FHI-aims) package [37]. The generalized gradient approximation (GGA) was
used for the exchange-correlation functional in Perdew–Burke–Ernzerhof (PBE) parametriza-
tion [38]. The dispersion interactions were accounted for via the Tkachenko–Scheffler (TS)
method [39] with screened Van der Waals (VdW) interactions [40]. Structural relaxations
were performed via the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algo-
rithm. Default light basis sets were used for structural optimization, and final total energies
were calculated using the default tight basis set. Illustrations of geometries were made
with the VESTA package [41].

First, the geometry of the bulk copper structure was optimized. The optimized value
of the lattice constant was aCu = 3.545 Å, which is in reasonable agreement with the
experimental value of 3.615 Å [42].

For surface calculations, we used the three-layer Cu(111) slab with the bottom layer
Cu atoms fixed in their bulk positions. Although thicker slabs are often preferred for
enhancing the accuracy of surface calculations [43], the three-layer slab used in our study
reproduces the periodicity of the FCC crystal in the (111) direction. Therefore, we believe
our calculations reliably capture both qualitative and quantitative trends in the adsorption
geometries and energies.

In the adsorption calculations, one SWCNT or GNR per unit cell was placed on the
top slab surface. We performed calculations with highly anisotropic rectangular unit cells
to minimize the lateral interactions of the adsorbed carbon structures with their periodical
images (Figure 1). In the z-direction, the slab images were separated by a vacuum region of
50 Å. K-points sampling with a 1 × 9 × 1 grid was used for calculations.

The nanotube diameter d was varied from 0.3 to 0.7 nm. Accordingly, the width of the
planar GNR on Cu(111) ranged from 0.9 to 1.9 nm. Due to the lattice mismatch between
Cu(111) and graphene, the GNRs (CNTs) were stretched by 1.76% in the longitudinal
(axial) direction. The same structural parameters were used for the freestanding CNTs and
GNRs calculations.

The images of all optimized structures obtained in our calculations and the input
geometry files in the FHI-aims format, containing detailed information on the atomic
coordinates of the relaxed structures, can be found in the SI files.
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Figure 1. Top and side view of the unit cells used in the calculations of the adsorbed zigzag (a,b) and
armchair (c,d) graphene nanoribbons.

3. Results and Discussion

To determine the energetically favorable state of the freestanding carbon structures,
we calculated the energy difference

∆E =
1
N
(ECNT − EGNR), (1)

between the total energy of the freestanding carbon nanotube ECNT and the total energy of
the fully relaxed freestanding graphene nanoribbon EGNR, normalized to the number of
carbon atoms N per calculation unit cell.

As can bee seen from Table 1, for CNTs with a diameter of 0.3–0.4 nm the tubular form
is energetically less preferable than the planar one. For large CNTs, the situation is reversed:
the total energy of the planar form is lower than that of the tubular form. This behavior
can be explained by the decreasing curvature of CNTs with the increasing CNT diameter,
which decreases the energy costs due to the bending of the graphitic sp2 structure and
outbalances the energy costs related to the edge formation energy of the GNRs.

Table 1. The energy difference per atom ∆E between the CNT and the GNR carbon forms in the
freestanding state. Negative values indicate that freestanding GNRs are energetically unfavorable
compared to freestanding CNTs.

d, nm Type ∆E, eV

0.3 ZZ 0.26

0.4
AC 0.06

ZZ −0.08

0.5
AC −0.06

ZZ −0.16

0.7 AC −0.11
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The optimal configurations of the AC- and ZZ-type CNTs on Cu(111) were identified.
Two different states of CNTs on Cu(111) were observed after the structural relaxation of the
slab: the optimal (Figure 2a,c) and metastable (Figure 2b,d). For the ZZ-CNT, the metastable
state is rotated by 15◦ around the CNT axis with respect to the optimal state (Figure 2a,b)
and by 30◦ for the AC-CNT (Figure 2c,d). The total energy differences between stable and
metastable states of adsorbed CNT are 0.28 eV and 0.11 eV for ZZ and AC type, respectively.
In the optimal state, more carbon atoms are bonded with the metal atoms compared to the
metastable state.

a b

c

a

d

ZZ ZZ

AC AC

Figure 2. Relaxed geometries of ZZ-CNTs (top) and AC-CNTs (bottom) in the optimal (a,c) and
metastable (b,d) orientations on Cu(111).

To characterize the relative stability of the adsorbed carbon structures on Cu(111), we
calculated the adsorption energy Ead using the energy of the freestanding CNT ECNT and
the energy of the metal slab without the adsorbate ECu(111) as a reference:

Ead =
1
N
(EC+Cu(111) − ECNT − ECu). (2)

Here, EC+Cu(111) is the total energy of the Cu(111) slab with a carbon structure ad-
sorbed on the top slab surface. The calculated adsorption energies are collected in Table 2.

The tubular form of ZZ-CNT with d = 0.3 nm adsorbed on Cu(111) turned out to
be unstable. This structure is converted to the planar form after structural relaxation.
In contrast, larger CNTs are metastable on Cu(111). They maintain the tubular geometry
upon the structural optimization. Interestingly, being unstable in the freestanding state, the
AC-CNT with d = 0.4 nm is stabilized on Cu(111).

Then, we considered possible intermediate states of the transformation of CNT to
GNR on Cu(111). The planar GNR state, which corresponds to the fully opened CNT, is
energetically more favorable than the partially opened CNT states (S1 and S2 in Figure 3).
Figure 3 shows calculated adsorption energies Ead of different configurations. It can be
seen that the energy gain from the transformation of the ZZ-type CNT to GNR is more
significant than that of the AC-type CNT.

According to earlier calculations, the edge formation energies of GNR are in a range
from 0.39 to 0.65 eV/Å for ZZ-GNR and from 0.7 to 0.74 eV for AC-GNR [44–47]. That is,
the formation of the ZZ-type edges is preferable to that of the AC-type ones due to more
efficient saturation of the dangling bonds of the edge carbon atoms [44]. In contrast, in the
freestanding state, the AC-GNRs are more favorable than the ZZ-GNRs [44]. This explains
the smaller energy gain observed for the opening of AC-CNTs on Cu(111) compared
to ZZ-CNTs.
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Figure 3. The adsorption Ead energy per atom of the ZZ (top) and AC (bottom) CNTs on Cu(111).
The CNT diameter d is 0.4 nm (a,c) and 0.5 nm (b,d).

With the increasing diameter of CNTs, the difference between energies of the adsorbed
CNTs and GNRs decreases. For example, for the smallest AC-CNT considered in the
present work (d = 0.4 nm), the adsorption energies of the CNT and GNR Ead are −0.11 eV
and −0.31 eV, respectively, whereas for the largest AC-CNT (d = 0.7 nm) the respective
adsorption energies are −0.04 eV and −0.08 eV (see Table 2). The decreasing curvature of
CNTs can explain such a behavior.

Table 2. The adsorption energy Ead per atom of the adsorbed carbon structure on Cu(111). S1 and S2
are the possible intermediate states of the transformation of CNT to GNR on Cu(111).

d, nm Type
Ead, eV

CNT S1 S2 GNR

0.4
AC −0.11 −0.20 −0.31

ZZ −0.10 −0.13 −0.24 −0.36

0.5
AC −0.05 −0.06 −0.12 −0.14

ZZ −0.05 −0.04 −0.15 −0.20

0.7 AC −0.04 −0.02 −0.05 −0.08

It should be noted that our DFT calculations were performed at 0 K. At elevated
temperatures atomic vibrations may lead to slight changes in adsorption geometry or
interaction energies. However, we believe that the fundamental trends observed in DFT
calculations, such as the relative stability of different adsorption configurations, which was
the focus of our study, remain consistent at elevated temperatures.
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4. Conclusions

In summary, DFT calculations show that the tubular form of carbon on Cu(111) is
energetically less favorable than the planar graphene nanoribon form. The increasing
diameter of CNT leads to a decreasing energy difference between the tubular and planar
states due to the decreasing curvature of CNTs. The energy gain from the transformation
from CNT to GNR is more significant for the ZZ-type structure than for the AC-type one.
Therefore, one may expect easier opening of ZZ-CNT to ZZ-GNR on Cu(111) than in the
case of AC-CNT due to a higher driving force.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/surfaces7040069/s1, Figure S1: The optimized geometry of the
zigzag (top) and armchair (bottom) CNTs adsorbed on Cu(111). The dashed line indicates the unit cell
used in the calculations; Figure S2: The optimized geometry of the zigzag (top) and armchair (bottom)
CNTs adsorbed on Cu(111). The dashed line indicates the unit cell used in the calculations; Figure S3:
Optimized geometries of the zigzag carbon nanotube transforming to the graphene nanoribbon on
Cu(111).; Figure S4: Optimized geometries of the armchair carbon nanotube transforming to the
graphene nanoribbon on Cu(111). Relaxed geometries of all structures are reported in the paper.
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