
Few-Body Syst           (2025) 66:24 
https://doi.org/10.1007/s00601-025-01991-z

Egorov Mikhail

Three-Dimensional Integral Faddeev Equations without a
Certain Symmetry

Received: 20 September 2024 / Accepted: 16 April 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025

Abstract A method for the direct integration of the three-dimensional Faddeev equations with respect to the
breakup T-matrix in momentum space for three-body systems with differing masses is presented. The Faddeev
equations are explicitly formulated without imposing symmetry or antisymmetry requirements on the two-
body t-matrices, thus accounting for mass differences between the three interacting particles. An algorithm for
the algebraic determination of non-relativistic wave functions for three-body systems with arbitrary masses
is given. Furthermore, it is directly demonstrated how the domain of logarithmic singularities in the integral
kernels of the Faddeev equations is significantly altered by varying the masses of the interacting particles. The
developed method for traversing logarithmic singularities is tested using the example of calculating the total
cross sections for elastic neutron-deuteron scattering and breakup reaction.

1 Introduction

The solutions to the dynamic equations of Faddeev [1] and Faddeev-Yakubovsky [2], along with numerous
generalizations and simplifications (see, e.g., [3–6] and also review of four-nucleon calculations [7]), provided
a strong foundation for precise methods in the nonrelativistic theory of interacting three- and few-body systems,
respectively. The Faddeev and Faddeev-Yakubovsky equations are best known in their separable form, also
known as the AGS form [8], the applicability of which is ensured by the rapid convergence of the Hilbert-
Schmidt norm with increasing scattering energy. Few-body dynamics in the AGS form have proven themselves
well not only in the description of elastic scattering and nuclear reactions at low energies, but also in various
types of eigenvalue problems with the search for binding energies in exotic meson-nuclear [9–11] and hyperon-
nuclear [12–14] systems.

Methods for accurately accounting for the Coulomb interaction in the few-body dynamics of arbitrary
charged, strongly interacting particles within the Faddeev approach in momentum space are also well-known
[15–20]. Two-potential methods for treating the Coulomb interaction in three-body dynamics with Coulomb
off shell effects have also been developed [21,22]. Calculations of Coulomb effects using the two-potential
method are known to be independent on the choice of the screening region for the Coulomb potential and do
not also require the use of regularization techniques.

One area of few-body physics that remains relatively undeveloped is the solution of the Faddeev equations
in their integral form, without resorting to partial wave decomposition [23–25]. Direct numerical integration
of the three-dimensional equations for the breakup T-matrix has remained underutilized, largely due to the
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computational demands on early computers and the traditional reliance on low-order partial wave expansions
for the short-range potentials commonly used in few-body calculations (see, e.g., [26,27]). However, advances
in computer technology and the growing application of precise few-body methods in atomic-molecular systems
[28–31] are creating new demands. This includes both expanding the types of potentials used and requiring
improvements in computational methods and the approximations employed, which were often specific to short-
range interactions. Direct numerical integration of the Faddeev equations, without partial wave decomposition,
has only been applied to scattering problems in the simplest, symmetrized case of nucleon scattering on a
coupled system, namely the deuteron [25]. This work demonstrated the viability of the numerical methods and
achieved good agreement between the results and experimental data.

When considering the complex energy plane to explore virtual and resonant three-body states, one encoun-
ters significant challenges in multichannel dynamics where the number of coupled dynamic equations increases
with changes in the particle types. Given that two-body interactions must be analytically continued into the
unphysical energy sheets for each partial wave, as done in Ref. [32], further increasing the number of coupled
equations via partial wave expansions ceases to be a simplifying approach. Even without changing the topology
of the energy surface, the inclusion of the Coulomb interaction necessitates addressing several fundamental
issues, such as the overlap of singularities between the t-matrix and the resolvent, the satisfaction of asymp-
totic conditions for scattering functions, and the independence of the result from the choice of the potential’s
screening area. Consequently, direct numerical integration for the scattering matrix becomes an increasingly
attractive method, both for solving scattering problems and for addressing spectral problems that involve ana-
lytical continuation of two-body potentials, as well as two- and three-body t-matrices, onto unphysical energy
sheets [32,33].

This work focuses specifically on the influence of mass differences between interacting particles as they
appear in the three-dimensional integral Faddeev equations, which results in eigenfunctions lacking specific
symmetry properties. It is explicitly derived the matrix elements of all particle permutation operators in the
vector basis, and their action on the momentum dependence of the two-body t-matrices and the three-body
system eigenfunctions is also demonstrated. Once formulation of the integral Faddeev equations in vector form
is used to provide expressions for the eigenvalue wave functions of three-body systems, the calculations of
these functions for the 3He system is also presented. One analyzes in detail how the domain of logarithmic
singularities arising in the integral kernels of the inhomogeneous Faddeev equations changes as the masses of
the interacting particles are varied over a wide range.

Since the appearance of the regions of logarithmic singularities is the same for both coordinate and momen-
tum representations and does not depend on the use of partial-wave expansions, a similar analysis should be
performed in each work devoted to the dynamics of three bodies of different masses. In particular, it is worth
noting the works [34–40] in which either the incident particle or the target is considered as clustered within
the framework of the Faddeev three-body equations. However, in most of these works, the focus is on dis-
cussing the inclusion of the Coulomb interaction, the method of solving the Faddeev equation, or comparing
its solutions with the continuum discretized coupled channels method. The singularities have been fully taken
into account in these calculations, but not described in detail for different particle masses, since the idea of
their treatment is exactly the same as for identical particles, but with a larger number of intermediate steps (see
also the review [41]). Present work us focused on writing explicitly such kinematic conditions for singularities
proposing and testing a simple method for avoiding its in cross section calculation.

2 Equations for the three-body breakup T-matrix without certain symmetry

For three bodies of different masses, the Jacobi variables �pi , �qi , i ∈ [1, 2, 3] where the index i-enumerates the
particles for which �p is the relative momentum in the interacting pair i , and �q-the spectator momentum of the
particle i relative to this pair will have two equivalent representations expressing these momenta through each
other

�p1 = − m2

m2 + m3
�p2 + �q2

m2 + m3

(
m3 + m2m3

m3 + m1

)
; �q1 = − �p2 − �q2

m1

m1 + m3
;

�p1 = − m3

m2 + m3
�p3 − �q3

m2M

(m2 + m3)(m1 + m2)
; �q1 = �p3 − �q3

m1

m1 + m2
;

�p2 = − m1

m3 + m1
�p1 − q1

m3 + m1

( m1m3

m2 + m3
+ m3

)
; �q2 = �p1 − �q1

m2

m2 + m3
;
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�p2 = − m3

m3 + m1
�p3 + �q3

m3 + m1

(
m1 + m1m3

m1 + m2

)
; �q2 = − �p2 − �q3

m2

m1 + m2
;

�p3 = − m1

m1 + m2
�p1 + �q1

m1 + m2

(
m2 + m1m2

m2 + m3

)
; �q3 = − �p1 − �q1

m3

m2 + m3
;

�p3 = − m2

m1 + m2
�p2 − �q2

m1 + m2

( m2m1

m1 + m3
+ m1

)
; �q3 = �p2 − �q2

m3

m3 + m1
. (1)

Here M = m1 + m2 + m3 is the sum of the masses of the three particles.
Since spin observables are beyond the scope of this work, the subsequent formalism and calculations will

be restricted to central potentials only.
Two-body t matrices are known enter the three-body phase space together with delta functions that exclude

the dynamic presence of a third particle in two-body domain. In the �p, �q representation for some vector
| � ′〉 ≡| t P�〉, where | �〉 is a stationary state of a three-body system, one should has

〈 �pi , �qi | ti P�〉 =
∑
k

∫
d3q ′

i d
3 p′

i d
3q

′′
k d

3 p
′′
k 〈 �pi , �qi | ti | �p′

i , �q ′
i 〉〈 �p′

i , �q ′
i | P | �p′′

k , �q ′′
k 〉·

·〈 �p′′
k , �q ′′

k | �〉 =
∑
k

∫
d3q ′

i d
3 p′

i d
3q

′′
k d

3 p
′′
k 〈 �pi | ti | �p′

i 〉δ(3)(�qi − �q ′
i )

(
δ(3)( �p′

i − �p′′
k )δ

(3)(�q ′
i − �q ′′

k )
)
〈 �p′′

k , �q ′′
k | �〉.

(2)

Jacobi indices i, j, k ∈ [1, 2, 3] in (2) denote a specific, native representation for the two-body t-matrix, the
permutation operator P , and for the wave function �. Summation over the representation indices effectively
reflects the presence of three equivalent sets of Jacobi variables in the system.

The matrix elements of the permutation operator P , after performing the integration, change the momen-
tum dependence of the t-matrix and the wave function �, which is a characteristic feature of the dynamic
manifestation of the third particle in previously defined objects, such as the two-body t-matrix and the bound
two-body state. In what follows, the representation indices will be omitted, and the action of the permutation
operators will be explicitly taken into account.

Removing six integrals in expressions (2) using kinematic relations (1) one leads to the following explicit
representations for two-body t matrices

〈 �p, �q | t1P�〉 =
∫

d3q
′′ 〈 �p | t1 | −�q m1

m1+m3
− �q ′′ 〉〈�q + �q ′′ m2

m2+m3
, �q ′′ | �〉+

+〈 �p | t1 | �q m1
m1+m2

+ �q ′′ 〉〈−�q − �q ′′ m3
m2+m3

, �q ′′ | �〉;
〈 �p, �q | t2P�〉 =

∫
d3q

′′ 〈 �p | t2 | �q m2
m2+m3

+ �q ′′ 〉〈−�q − �q ′′ m1
m3+m1

, �q ′′ | �〉+
+〈 �p | t2 | −�q m2

m1+m2
− �q ′′ 〉〈�q + �q ′′ m3

m3+m1
, �q ′′ | �〉;

〈 �p, �q | t3P�〉 =
∫

d3q
′′ 〈 �p | t3 | −�q m3

m2+m3
− �q ′′ 〉〈�q + �q ′′ m1

m1+m2
, �q ′′ | �〉+

+〈 �p | t3 | �q m3
m3+m1

+ �q ′′ 〉〈−�q − �q ′′ m2
m1+m2

, �q ′′ | �〉.

(3)

The system of coupled Faddeev equations for a three-body Ti matrix, where the index i-characterizes a
spectator particle marked relative to an interacting pair, without introducing a certain symmetry with respect
to the permutation of particles in places, is represented as

T1 = t1�2 + t1�3 + t1R0T2 + t1R0T3;
T2 = t2�1 + t2�3 + t2R0T1 + t2R0T3;
T3 = t3�1 + t3�2 + t3R0T1 + t3R0T2,

(4)

where R0 is an interaction-free three-body Green function.
Choosing a coordinate system according to work [25], in which the momentum �q0 characterizes the

relative momentum of a particle impinging on a bound system. Then in the selected �p, �q representation, in
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which 〈 �p, �q | T�〉 ≡ T (p, xp, x
q0
pq , xq , q; q0)〈 �p, �q | �〉 and xp, xq are the cosines of the polar angles of

the vectors �p and �q , respectively, and xq0
pq is the angle between the normals drawn for the planes �p − �q0 and

�q − �q0, the system (4) takes the following final form

T1(p, xp, x
q0
pq , xq , q) = t1

(
p, p′

11, θpp′
11

)
〈�q + �q0

m2
m2+m3

, �q0 | �〉

+t1
(
p, p′

12, θpp′
12

)
〈−�q − �q0

m3
m2+m3

, �q0 | �〉 +
∫

d3q
′′[
t1

(
p, f11(q

′′
), θ f11q ′′

)

(
E − q2

2μ23
− q

′′2
2μ13

− qq
′′
y
qq

′′
m3

)−1
T2

(
g11(q

′′
), Xg11, x

q0

g11q
′′ , xq ′′ , q

′′)

+t1
(
p, f12(q

′′
), θ f12q

′′
)(

E − q2

2μ23
− q

′′2
2μ12

− qq
′′
y
qq

′′
m2

)−1

T3

(
g12(q

′′
), Xg12 , x

q0

g12q
′′ , xq ′′ , q

′′)]
;

T2(p, xp, x
q0
pq , xq , q) = t2

(
p, p′

21, θpp′
21

)
〈−�q − �q0

m1
m3+m1

, �q0 | �〉

+t2
(
p, p′

22, θpp′
22

)
〈�q + �q0

m3
m3+m1

, �q0 | �〉 +
∫

d3q
′′[
t2

(
p, f21(q

′′
), θ f21q ′′

)

(
E − q2

2μ31
− q

′′2
2μ23

− qq
′′
y
qq

′′
m3

)−1
T1

(
g21(q

′′
), Xg21, x

q0

g21q
′′ , xq ′′ , q

′′)

+t2
(
p, f22(q

′′
), θ f22q

′′
)(

E − q2

2μ31
− q

′′2
2μ12

− qq
′′
y
qq

′′
m1

)−1

T3

(
g22(q

′′
), Xg22 , x

q0

g22q
′′ , xq ′′ , q

′′)]
;

T3(p, xp, x
q0
pq , xq , q) = t3

(
p, p′

31, θpp′
31

)
〈�q + �q0

m1
m1+m2

, �q0 | �〉

+t3
(
p, p′

32, θpp′
32

)
〈−�q − �q0

m2
m1+m2

, �q0 | �〉 +
∫

d3q
′′[
t3

(
p, f31(q

′′
), θ f31q ′′

)

(
E − q2

2μ12
− q

′′2
2μ23

− qq
′′
y
qq

′′
m2

)−1
T1

(
g31(q

′′
), Xg31, x

q0

g31q
′′ , xq ′′ , q

′′)

+t3
(
p, f32(q

′′
), θ f32q

′′
)(

E − q2

2μ12
− q

′′2
2μ31

− qq
′′
y
qq

′′
m1

)−1

T2

(
g32(q

′′
), Xg32 , x

q0

g32q
′′ , xq ′′ , q

′′)]
;

(5)

where, for simplicity, the parametric dependence of all T matrices on the momentum q0 was omitted, and the
values μi, j �=i are the usual reduced particle masses. The notation is introduced in (5) for convenience

f11(q
′′
) =

√(
q

m1

m1 + m3

)2 + q ′′2 + 2qq ′′ m1

m1 + m3
yqq ′′ ;

θ f11q
′′ = −ypq

q

f11(q
′′
)

m1

m1 + m3
− ypq ′′

q
′′

f11(q
′′
)
;

g11(q
′′) =

√
q2 +

(
q ′′ m2

m2 + m3

)2 + 2qq ′′ m2

m2 + m3
yqq ′′ ;

Xg11 = yqq0

q

g11(q
′′
)

+ yq ′′q0

q
′′

g11(q
′′
)

m2

m2 + m3
;

xq0

g11q
′′ =

yqq ′′ q
g11(q

′′
)
+ q

′′

g11(q
′′
)

m2
m2+m3

− aqq ′′ xq ′′
√

1 − a2
qq ′′

√
1 − x2

q ′′
;
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aqq ′′ = yqq0

q

g11(q
′′
)

+ yq ′′q0

q
′′

g11(q
′′
)

m2

m2 + m3
;

f12(q
′′
) =

√(
q

m1

m1 + m2

)2 + q ′′2 + 2qq ′′ m1

m1 + m2
yqq ′′ ;

θ f12q
′′ = ypq

q

f12(q
′′
)

m1

m1 + m2
+ ypq ′′

q
′′

f12(q
′′
)
;

g12(q
′′) =

√
q2 +

(
q ′′ m3

m2 + m3

)2 + 2qq ′′ m3

m2 + m3
yqq ′′ ;

Xg12 = −yqq0

q

g12(q
′′
)

− yq ′′q0

q
′′

g12(q
′′
)

m3

m2 + m3
;

xq0

g12q
′′ =

−yqq ′′ q
g12(q

′′
)
− q

′′

g12(q
′′
)

m3
m2+m3

− bqq ′′ xq ′′
√

1 − b2
qq ′′

√
1 − x2

q ′′
;

bqq ′′ = −yqq0

q

g12(q
′′
)

− yq ′′q0

q
′′

g12(q
′′
)

m3

m2 + m3
. (6)

and also

p′
11 =

√(
q

m1

m1 + m3

)2 + q2
0 + 2qq0

m1

m1 + m3
yqq0;

p′
12 =

√(
q

m1

m1 + m2

)2 + q2
0 + 2qq0

m1

m1 + m2
yqq0;

θpp′
11

= −ypq
q

p′
11

m1

m1 + m3
− ypq0

q0

p′
11

, θpp′
12

= ypq
q

p′
12

m1

m1 + m2
+ ypq0

q0

p′
12

;

yq ′′q0
= x

′′
xq0 +

√
1 − x ′′2

√
1 − x2

q0
cos (φ

′′ − φq0), yqq0 = xq;
ypq ′′ = ypq x

′′ +
√

1 − x ′′2
√

1 − y2
pq cos (φp − φ

′′
), ypq0 = xp;

ypq = xq xp +
√

1 − x2
q

√
1 − x2

p cos (φq − φp), yqq ′′ = x
′′ ;

xq ′′ = x
′′
xq0 +

√
1 − x ′′2

√
1 − x2

q0
cos (φ

′′ − φq0).

(7)

In addition to obtain the expressions p′
21, p′

22, θpp′
21

, θpp′
22

, f21(q
′′
), θ f21q

′′ , f22(q
′′
), θ f22q

′′ , g21(q
′′
), g22(q

′′
),

Xg21 , Xg22 , xq0

g21q
′′ and xq0

g22q
′′ it is enough in the formulas (6,7) to replace the masses m1 ↔ m2 and change

the signs at all angles θpp′
11

, θpp′
12

, θ f11q
′′ , θ f12q

′′ , Xg11 , Xg12 , xq0

g11q
′′ and xq0

g12q
′′ to the opposite. It can also

be shown that the expressions for p′
31, p′

32, θpp′
31

, θpp′
32

, f31(q
′′
), θ f31q

′′ , f32(q
′′
), θ f32q

′′ , g31(q
′′
), g32(q

′′
),

Xg31 , Xg32 , xq0

g31q
′′ and xq0

g32q
′′ are obtained from the formulas (6,7) by replacing the masses (m1,m2,m3) with

(m3,m1,m2) with the same sign at all angles.
By setting the three-body scattering energy E and integrating the expression (6), which includes two-body

t matrices defined on half off mass shell, one can obtain a solution of the three-body scattering problem relative
to the breakup T -matrices T1, T2, and T3. Subsequently, these T matrices can be used, as is known [23], in
finding the amplitudes of elastic scattering and reactions.

Having fixed the initial state of the system in the form of �1(23), where the pair (23) forms a coupled state,
which is described by its eigenstate function φ(23)(�q), the transition operator will formally act according to
the rule

U | �1(23)〉 = (P12P23 + P13P23)
(
R−1

0 + T1
)
�1(23) =(

R−1
0 + T2

)
�2(31) + (

R−1
0 + T3

)
�3(12).

(8)
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The expression for the elastic scattering amplitude 〈� | U | �〉 is obtained from the matrix elements of the
transition operator and has an explicit form for a system of three different masses

〈�1(23) | U | �1(23)〉 =
= φ(23)

( − �q m1
m1+m3

− �q0
)(
E − q2

2μ23
− q2

0
2μ13

− q0qyqq0
m3

)
φ(31)(�q + �q0

m2
m2+m3

)+
+ φ(23)

(�q m1
m1+m2

+ �q0
)(
E − q2

2μ23
− q2

0
2μ12

− q0qyqq0
m2

)
φ(12)(−�q − �q0

m3
m2+m3

)+
+

∫
d3q ′[〈�1(23) | −�q m1

m1+m3
− �q ′, �q ′〉〈�q + �q ′ m2

m2+m3
, �q ′ | T2 | �2(31)〉+

+ 〈�1(23) | �q m1
m1+m2

+ �q ′, �q ′〉〈−�q − �q ′ m3
m2+m3

, �q ′ | T3 | �3(12)〉
]
. (9)

It is important to note that in elastic scattering, the free motion of the spectator’s particle (not coupled in
the pair) is split off and the momentum of the bombarding particle �q0 is preserved in magnitude, whereas
for scattering with rearrangement, the momentum �q0 is equal in modulus to the final particle momentum �q .
Antisymmetrization of three-body states ψ1(23) for the case of three identical fermions directly leads equation
(9) to a simple case given in the work [25].

The breakup amplitude 〈 �p, �q | U0 | �1(23)〉 is obtained by the action of the breakup operator U0 =
(1 + P)T1�1(23) and in accepted notation has the form

〈 �p, �q | U0 | �1(23)〉 = T1(p, xp, x
q0
pq , xq , q) + T2(p2, xp2 , x

q0
p2q2 , xq2 , q2)

+T3(p3, xp3, x
q0
p3q3, xq3, q3).

(10)

In the selected frame of reference, when the Oz axis is aligned with the momentum �q0, one has for independent
variables of T matrices 〈 �p′, �q ′ | Tk | �k(i j)〉 ≡ Tk(p′

k, xp′
k
, xq0

p′
kq

′, x
′, q ′) (9), where k ∈ [2, 3] and i �= j �= k

the following explicit expressions

p′
k =

√
q2 +

(
q ′ mk

m2 + m3

)2 + 2qq ′ mk

m2 + m3
yqq ′ ;

xp′
k

= (−1)k xq
q

p′
k

+ (−1)k x ′ q ′

p′
k

mk

m2 + m3
x ′;

xq0
p′
kq

′ = (−1)k
yqq ′ q

p′
k

+ q ′
p′
k

mk
m2+m3

− cqq ′x ′
√

1 − x ′2
√

1 − c2
qq ′

;

cqq ′ = (−1)k xq
q

p′
k

+ (−1)k x ′ q ′

p′
k

mk

m2 + m3
;

yqq ′ = xq x
′ +

√
1 − x2

q

√
1 − x ′2 cos (φq − φ′).

(11)

Kinematic variables for the breakup T -matrices of the breakup amplitude have a more complex form (10)

pk =
√( pmk

m2 + m3

)2 +
( qmlM

(m2 + m3)(m1 + ml)

)2 + (−1)l2pqypq
m2m3M

(m2 + m3)2(m1 + ml)
;

ypq = xpxq +
√

1 − x2
p

√
1 − x2

q x
q0
pq;

qk =
√
p2 +

( qm1

m1 + ml

)2 + 2pq
m1

m1 + ml
ypq;

xpk = − mk

m2 + m3

p

pk
xp + (−1)k

q

pk

mlM

(m2 + m3)(m1 + ml)
xq;

xqk = − p

qk
xp − q

qk

m1

m1 + ml
xq;
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xq0
pkqk =

(−1)kmk p2

pkqq (m2+m3)
+ m1mk−mlM

(m2+m3)(m1+ml )
pq
pkqk

ypq − (−1)km1mlM
(m2+m3)(m1+ml )

2
q2

pkqk
− xpk xqk√

1 − x2
pk

√
1 − x2

qk

, (12)

where the indices k, l ∈ [2, 3] run through the same values and k �= l.

3 Eigenstates of the system

It is natural to expect that, as in the case of three identical particles (fermions or bosons), the eigenfunction
of the system (5) is also found as an eigenvector of a homogeneous algebraic system of equations for a given
binding energy Eb of three-body system.

Let ai j , i �= j , i, j ∈ [1, 2, 3] are the integral kernels of a homogeneous system of equations (5). Then the
eigenvector of this system is found by a simple algebraic approximation of the integral equation to a numerical
grid of nodes N × N , where N is the number of grid nodes along the momentum �q or �q0

[(1N×N 0 0
0 1N×N 0
0 0 1N×N

)
−

( 0 a12 a13
a21 0 a23
a31 a32 0

)]

E=Eb

⎛
⎝

φ(1−N )

φ(N+1−2N )

φ(2N+1−3N )

⎞
⎠ = 0 (13)

In equation (13) φ(1−N ), φ(N+1−2N ), and φ(2N+1−3N ) are components of the algebraic wave function, projected
for each partial component of two-body t matrices on a momentum grid | �q |. It is important to note that for
eigenvalue problems, the independent variables of the integral kernels ai j are q

′′
,x

′′
,φ

′′
, and p, q , with only

the last two variables being set the kinematic ones of the process and are approximated by grid momenta. That
is why the solution of the system (13) allows one to obtain eigenstate functions projected for definite partial
waves only.

The absence of a certain symmetry for the three-body wave function leads to another interesting con-
sequence characteristic of solving systems of coupled equations. The system (5) couples different Faddeev
components �1(23), �2(31), and �3(12) of the total wave function between themselves. Therefore, the algebraic
solutions (13) must also be linearly related with each others and with Faddeev’s components, as follows from
the system (5)

φ(1−N ) = a
(
�2(31) + �3(12)

);
φ(N+1−2N ) = b

(
�1(23) + �3(12)

);
φ(2N+1−3N ) = c

(
�1(23) + �2(31)

)
,

(14)

where a, b, c are some constants. Since the sum of the Faddeev’s components is a total wave function, which
on the other hand has an algebraic approximation in the form of φ(1−3N ), then one leads to the relation

φ(1−N ) + φ(N+1−2N ) + φ(2N+1−3N ) = �1(23) + �2(31) + �3(12), (15)

from which it automatically follows that the constants a = b = c = 1/2. Using the relations (14), it is possible
to express the Faddeev’s components of the total wave function of the considered system through algebraic
solutions (13).

The figure (1) shows the Faddeev’s components �1(23) as an example of the wave function of the proton-
neutron-proton three-nucleon system (3He) calculated at different masses m1 = 0.5mp,mp, 2mp of the
spectator nucleon. The separable Bonn parameterization of the fourth rank [43] was used as a model of NN
interaction, which provides a reliable description of the phase shifts 1S0, 3S1 −3 D1, as well as the binding
energy of the deuteron. For comparison, the partial 1S0 − S component of the parameterization of the three-
nucleon function from the work [42] is presented in the same figure. As one can see, despite the similar
magnitude of the wave function in the region of small momenta values of the �p-interacting pair and �q-nucleon
spectator, the form of attenuation of the wave function in the calculations of this work is not symmetrical and
steeper than in the parameterization of [42]. The decrease and smearing of the wave function �pnp(p, q) in
the region of small momenta values looks unexpected with both a decrease and an increase in the mass of the
m1 spectator particle.

Thus, the developed approach with direct integration of the Faddeev equations without an explicit require-
ment for symmetry or antisymmetry of the wave functions of interacting particles, as calculations have shown,
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Fig. 1 Left: the partial 1S0 − S component of the wave function of the three-nucleon system (p-n-p), calculated on the basis of
parameterization V.Baru [42] and in this work using a simple Bonn separable model of NN interaction [43]. Right: comparison
of various calculations of the Faddeev’s �1(23) component in partial 1S0 − S wave with mass variation m1 = 0.5mp , mp , 2mp

gives not only an physically acceptable result for known three-nucleon systems with a description of their
binding energies [44], but also allows one to arbitrarily change the masses of interacting particles with a
corresponding change of two-body interactions.

4 Regions of logarithmic singularities for different particle masses

How the regions of the logarithmic singularities of the integral kernels ai j (5) change depending on the masses
of interacting particles? For to answer this item, one consider the interaction-free three-body Green function
R0:

R0 =
(
E − q2

2μ23
− q

′′2

2μ13
− qq

′′
yqq ′′

m3

)−1;

y0 = m3

qq ′′
(
E − q2

2μ23
− q

′′2

2μ13

)
.

(16)

The boundaries of the logarithmic singularities domain are known to be determined by the equality y0 = ±1.
From this simple equality, three ranges of values of the integration variable q

′′
follow, outlining the area of

moving logarithmic singularities as a function of the spectator momentum | �q |:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1 : q
′′ = −μ13qy0

m3
+

√
2μ13

(
E + q2

[ m1m2
m3

(y2
0−1)−M

2m2(m1+m3)

])
;

f2 : q
′′ = μ13qy0

m3
−

√
2μ13

(
E + q2

[ m1m2
m3

(y2
0−1)−M

2m2(m1+m3)

])
;

f3 : q
′′ = μ13qy0

m3
+

√
2μ13

(
E + q2

[ m1m2
m3

(y2
0−1)−M

2m2(m1+m3)

])
.

(17)

Moreover, the definition area of the functions f1, f2, and f3 for y0 ≥ 0 are determined

f1 ∈ [0,

√
q2∨], f2 ∈ [

√
q2∨,

√
q2∧], f3 ∈ [0,

√
q2∧], (18)

where

q2∧ = 2m2E(m1 + m3)

M − m1m2
m3

(y2
0 − 1)

;

q2∨ = 2m2m3E(m1 + m3)

m1m2 + m3M
.

(19)

In the case when y0 < 0, the definition areas of the functions f1 and f3 (18) are swapped.
The figure (2) shows the regions of logarithmic singularities occurring in the proton-neutron-proton system

(mp − mn − mp or 3He) at the scattering energy E = 1 MeV. The boundaries of the integration regions (19)
are marked with bold dots. Changes in these boundaries due to a ten times increase and one hundred times
decrease in the mass of them1 component are marked with solid arrows with the number 1. Similarly, boundary
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Fig. 2 Regions of logarithmic singularities at scattering energy E = 1 MeV (a): in the system mp − mn − mp , (b): in the
systems 10mp −mn −mp , mp − 10mn −mp , mp −mn − 10mp , (c): in the systems mp/100 −mn −mp , mp −mn/100 −mp ,
mp −mn −mp/100. Circles mark the positions of the boundaries of q∨, q∧, and arrows with numbers (1,2,3 - change in mass of
m1, m2, m3, respectively) mark the movement of these boundaries from one to another system due to changes in the masses of one
of the components. Additionally, the area | y0 |< 1 is marked in Figure (a) inside the boundaries described by the functions f1,
f2, and f3 (17). The colors in Figures (b) and (c) indicate the areas of logarithmic singularities: the black system ismp −mn −mp ,
the red system is 10mp − mn − mp , mp/100 − mn − mp , the green system is mp − 10mn − mp , mp − mn/100 − mp and the
blue system is mp − mn − 10mp , mp − mn − mp/100

movements (19) are denoted due to a ten times increase and one hundred times decrease in the mass of the
componentsm2 (dash-dotted arrow) andm3 (dotted arrow). The zones of logarithmic singularities visible in the
figure, can vary markedly depending on the change in the masses of one or another component of the system.
Increasing the energy E with constant masses of the components of the system, the regions of logarithmic
singularities invariably grow, while with an increasing in the mass of one of the components, the zone can
stretch along the momenta q

′′
and q , as shown in the figure (2)(b), and can also shrink into an arc as the mass

of m3 increases. A similar nontrivial behavior of the logarithmic singularities domain is seen with a sharp
decrease in the mass of one of the components of the system by a factor of 100. In this case, the singularity
area is transformed into an arc, and also stretches into a wedge in the case of a decrease in the mass of m3 as
shown in the figure (2)(c). Such behavior of the logarithmic singularities areas for systems without a certain
symmetry, i.e. with a difference in particle masses, including with a strong difference of tens and hundreds of
times, can play a useful role in the numerical solution of a system of inhomogeneous Faddeev equations (5).
This simplification may consist in jumping over these logarithmic singularities areas in the direct numerical
integration of the system (5) on irregular grids of momenta q and q

′′
due to its smallness.

One note how expressions for functions (17) will change for the remaining Green’s functions (5). If one
denote by the quantities R[1]

0 and R[2]
0 those Green functions that are included in the first line of the equation

(5), and by the quantities R[3]
0 , R[4]

0 and R[5]
0 , R[6]

0 those Green functions that are included in the second and
third lines, respectively, then similar (17) expressions can be obtained by changing the masses of particles
according to the rule

R0 ≡ R[1]
0 (m1,m2,m3);

R[1]
0 (m1,m3,m2) = R[2]

0 (m1,m2,m3), R[1]
0 (m2,m1,m3) = R[3]

0 (m1,m2,m3);
R[3]

0 (m3,m2,m1) = R[4]
0 (m1,m2,m3), R[2]

0 (m3,m2,m1) = R[5]
0 (m1,m2,m3);

R[5]
0 (m2,m1,m3) = R[6]

0 (m1,m2,m3).

(20)

To accurately traverse the region of logarithmic singularities, a numerical method was developed to control
the indices of cycles corresponding to the variable q

′′
for an arbitrary numerical grid, depending on the form

of the resolvent R0 (16) and the sign of the cosine y0. This fully automated numerical approach for locating
the boundaries of the moon like region of singularities allows the determination of the boundaries of cycles of
the variable q

′′
within which this zone resides for any relative momentum q ≡ qi( jk) of the spectator particle.

Based on the identified indices of the q
′′

variables, the resolvent of the form (16) was approximated in the region
of logarithmic singularities using linear or cubic functions. The form of the linear function was determined by
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Fig. 3 Left: Contribution of individual approximations Ci (see formula (22)) and Padé approximants to the total nd elastic
scattering cross section. Right: Similar contributions to the total breakup cross section. For comparison, data from the ENDF
library [46] and a similar microscopic calculation [25] are shown

the following formula:

R−1
0 ⇒ | R−1

0 |i≤−1 + | R−1
0 |i≥+1

2
·

R−1
0 i≤−1

| R−1
0 |i≤−1

(21)

This approximation method is referred to as linear. Points with indices i≤ correspond to the boundaries of
the variable q

′′
defining the function f1 or f2. Similarly, points with indices i≥ define the boundaries of the

running variable q
′′

for the function f3.
The cubic approximation method refers to the use of a Hermite cubic one-dimensional spline, developed

in [45] for the analogous purpose of traversing the region of logarithmic singularities. In this case, this cubic
spline is applied only to replace the resolvent itself, using four points from the set [i≤−1, i≤, i≥, i≥+1].

The validation of the chosen linear method for approximating the integrand resolvent in the region of
logarithmic singularities in an automated manner for any predefined set of considered masses m1,m2, and m3
of the three-body interacting system was performed using the examples of neutron-deuteron elastic scattering
and the breakup process nd → npn. The system of equations (5) was solved iteratively in a schematic form.

Ti ≈
4∑

α=0

Cα, (22)

whereCα represents individual iterations of equation (5),C0 is the inhomogeneous term,C1 is the first iteration,
and so on. From individual iterations of equation (5), rational functions - Padé approximants of the form [1/1]
and [2/2] - were constructed, which were then used to find the elastic scattering amplitudes (9) and breakup
amplitudes (10). A comparison of the obtained cross sections using the Bonn potential [43] with data from the
ENDF evaluated nuclear data library [46] is presented in Figure (3).

As direct calculations show, constructing a [2/2] Padé approximant is sufficient to describe the cross sections
of the processes under consideration. At the same time, the contributions of individual iterations of equation (5),
in particular iterations C3 and C4, can give local spikes in the region of kinetic energies of the incident neutron
T > 12 MeV. This cross-section calculation completes the validation of the developed numerical method
for finding and localizing the regions of logarithmic singularities for a system of three interacting bodies of
different masses and shows that, along with the traditional cubic spline, approximating the entire integrand in
equations (5), a simple linear approximation of the resolvent in the region of logarithmic singularities can also
lead to a physically acceptable result.

5 Conclusion

In this work, inhomogeneous Faddeev integral equations for three different bodies are explicitly written out
without using the traditional partial wave decomposition for the resulting breakup T-matrix. Expressions for the
amplitude of elastic scattering and reaction are also written out in the context of direct integration of the obtained
equations in momentum space without using partial wave decomposition. An algebraic method for searching
for eigenfunctions of stationary states of three-body systems with different masses based on homogeneous
Faddeev equations is proposed and tested. The behavior of logarithmic singularities for a system of three bodies
of different masses is also analyzed also in total cross sections calculations for neutron-deuteron elastic and
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breakup processes. It was found that at certain values of one of the masses of the three particles, logarithmic
regions of singularities are compressed into an arc or elongated into a wedge-like region. Padé approximations
for given Faddeev three-body equation and two methods for resolvent approximations in singularities zone are
also tested and results are in a good agreement with data.

The results of this work can be directly used both for the direct solution (for example, using Padé approx-
imants) of inhomogeneous Faddeev equations for a system of three bodies of different masses to search for
the scattering cross section and the reaction cross section in the cluster model of the target nucleus, and for
finding various non-relativistic wave functions of three-body systems.
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