Неожиданное открытие физиков-теоретиков: одинокий электрон оказался не один

В мире квантовой физики каждый день происходят удивительные открытия, которые меняют наше понимание фундаментальных законов природы. Недавнее исследование, проведенное на физическом факультете Томского госуниверситета Иваном Акимовым, Петром Казинским и Алексеем Соколовым, раскрыло новые свойства электронов, которые могут иметь важные последствия для квантовой электродинамики и технологий будущего. Ученые ФФ ТГУ обнаружили, что волновая функция одного электрона может поддерживать особые квазичастицы — плазмон-поляритоны. Результаты исследования опубликованы в журнале Physical Review D (Q1).

Плазмон-поляритоны — это гибридные частицы, возникающие в результате взаимодействия плазмонов – квазичастиц, описывающих коллективные (как обычно считалось) колебания зарядов – с электромагнитным полем. Как правило, плазмоны изучаются в контексте плазмы или металлов, где они играют ключевую роль в оптических и электронных свойствах материалов. Однако новое исследование показывает, что плазмоны существуют и на одном электроне. В полном согласии с предсказанием классика оказалось, что «электрон так же неисчерпаем, как и атом; природа бесконечна».

— Волновой пакет электрона можно представить как облако, которое может менять свою форму и плотность в зависимости от внешних условий. Плазмоны и плазмон-поляритоны — это «вибрации» такого облака, вызванные взаимодействием с внешним электромагнитным полем, – рассказывает аспирант кафедры квантовой теории поля ФФ ТГУ Алексей Соколов.

Как отмечает магистрант кафедры квантовой теории поля ФФ ТГУ Иван Акимов, еще одна аналогия — это голограмма:

— В когерентных процессах, которые изучаются в статье, электронный волновой пакет действует как объект, создающий интерференционную картину с падающим фотоном. Это похоже на создание голограммы, где информация о квантовом состоянии электрона может быть считана с помощью рассеянного света.

В квантовой электродинамике электрон обычно рассматривается как точечная частица. Однако в некоторых когерентных процессах, например, когерентном комптоновском рассеянии, волновая функция электрона ведет себя как своего рода «заряженная жидкость». Это означает, что электрон может проявлять свойства, которые обычно ассоциируются с коллективными явлениями, такими как плазмоны.

Ученые ФФ ТГУ обнаружили, что волновая функция одного электрона может поддерживать восемь независимых плазмон-поляритонных мод, что удивительным образом совпадает с числом глюонов и с числом псевдоскалярных мезонов в квантовой хромодинамике. Эти моды возникают как точные решения эффективных уравнений Максвелла, которые описывают распространение электромагнитного поля в присутствии волнового пакета одного электрона.

Коротковолновый предел, когда длина волны внешнего электромагнитного поля намного меньше, чем типичный масштаб изменений волновой функции электрона. В этом случае имеется восемь независимых плазмон-поляритонных мод.

Инфракрасный предел, когда длина волны внешнего поля намного больше, чем размер волнового пакета электрона. В этом случае плазмоны сводятся к динамическому дипольному моменту, связанному с электроном. Другими словами, в когерентных электродинамических процессах с малой передачей импульса фотону электрон ведет себя как частица, обладающая динамическим дипольным моментом.

Практическая значимость и будущие исследования

Это открытие имеет важные последствия для понимания когерентных процессов в квантовой электродинамике. Например, в процессах вынужденного излучения от одиночного электрона в внешнем электромагнитном поле плазмон-поляритонные резонансы могут значительно усиливать амплитуду когерентного рассеяния. Это может быть использовано в экспериментах, где электроны удерживаются в ловушках, таких как ловушка Пеннинга, для изучения их взаимодействия с электромагнитными полями.

Ученые ТГУ планируют продолжить исследования, чтобы изучить влияние плазмон-поляритонных резонансов на другие когерентные процессы, где волновая функция электрона ведет себя как «заряженная жидкость». Это может открыть новые горизонты в квантовой оптике, нанофотонике и других областях, где взаимодействие света с веществом играет ключевую роль.

Открытие плазмон-поляритонов на одном электроне — это еще один шаг к пониманию сложной природы квантового мира. Оно не только расширяет наши знания о фундаментальных свойствах электронов, но и открывает новые возможности для разработки квантовых технологий будущего.

— Мы только начинаем понимать, насколько сложным может быть поведение элементарных частиц. Наша работа — это шаг к тому, чтобы увидеть электрон не как точку, а как сложную систему с множеством степеней свободы, — заключает профессор кафедры квантовой теория поля ФФ ТГУ Петр Казинский.

Полный текст статьи «Плазмон-поляритонные моды на волновом пакете одного электрона» опубликован в журнале Physical Review D. См. также arXiv.